120 research outputs found

    Re-Inventing Public Education:The New Role of Knowledge in Education Policy-Making

    Get PDF
    This article focuses on the changing role of knowledge in education policy making within the knowledge society. Through an examination of key policy texts, the Scottish case of Integrated Children Services provision is used to exemplify this new trend. We discuss the ways in which knowledge is being used in order to re-configure education as part of a range of public services designed to meet individuals' needs. This, we argue, has led to a 'scientization' of education governance where it is only knowledge, closely intertwined with action (expressed as 'measures') that can reveal problems and shape solutions. The article concludes by highlighting the key role of knowledge policy and governance in orienting education policy making through a re-invention of the public role of education

    Acetylation Regulates WRN Catalytic Activities and Affects Base Excision DNA Repair

    Get PDF
    Background: The Werner protein (WRN), defective in the premature aging disorder Werner syndrome, participates in a number of DNA metabolic processes, and we have been interested in the possible regulation of its function in DNA repair by post-translational modifications. Acetylation mediated by histone acetyltransferases is of key interest because of its potential importance in aging, DNA repair and transcription. Methodology/Principal Findings: Here, we have investigated the p300 acetylation mediated changes on the function of WRN in base excision DNA repair (BER). We show that acetylation of WRN increases in cells treated with methyl methanesulfonate (MMS), suggesting that acetylation of WRN may play a role in response to DNA damage. This hypothesis is consistent with our findings that acetylation of WRN stimulates its catalytic activities in vitro and in vivo, and that acetylated WRN enhances pol b-mediated strand displacement DNA synthesis more than unacetylated WRN. Furthermore, we show that cellular exposure to the histone deacetylase inhibitor sodium butyrate stimulates long patch BER in wild type cells but not in WRN depleted cells, suggesting that acetylated WRN participates significantly in this process. Conclusion/Significance: Collectively, these results provide the first evidence for a specific role of p300 mediated WRN acetylation in regulating its function during BER

    Recruitment and Activation of RSK2 by HIV-1 Tat

    Get PDF
    The transcriptional activity of the integrated HIV provirus is dependent on the chromatin organization of the viral promoter and the transactivator Tat. Tat recruits the cellular pTEFb complex and interacts with several chromatin-modifying enzymes, including the histone acetyltransferases p300 and PCAF. Here, we examined the interaction of Tat with activation-dependent histone kinases, including the p90 ribosomal S6 kinase 2 (RSK2). Dominant-negative RSK2 and treatment with a small-molecule inhibitor of RSK2 kinase activity inhibited the transcriptional activity of Tat, indicating that RSK2 is important for Tat function. Reconstitution of RSK2 in cells from subjects with a genetic defect in RSK2 expression (Coffin-Lowry syndrome) enhanced Tat transactivation. Tat interacted with RSK2 and activated RSK2 kinase activity in cells. Both properties were lost in a mutant Tat protein (F38A) that is deficient in HIV transactivation. Our data identify a novel reciprocal regulation of Tat and RSK2 function, which might serve to induce early changes in the chromatin organization of the HIV LTR

    Synthesis and catalysis of chemically reduced metal–metalloid amorphous alloys

    Get PDF
    This is the published version. Copyright 2012 Royal Society of ChemistryAmorphous alloys structurally deviate from crystalline materials in that they possess unique short-range ordered and long-range disordered atomic arrangement. They are important catalytic materials due to their unique chemical and structural properties including broadly adjustable composition, structural homogeneity, and high concentration of coordinatively unsaturated sites. As chemically reduced metal–metalloid amorphous alloys exhibit excellent catalytic performance in applications such as efficient chemical production, energy conversion, and environmental remediation, there is an intense surge in interest in using them as catalytic materials. This critical review summarizes the progress in the study of the metal–metalloid amorphous alloy catalysts, mainly in recent decades, with special focus on their synthetic strategies and catalytic applications in petrochemical, fine chemical, energy, and environmental relevant reactions. The review is intended to be a valuable resource to researchers interested in these exciting catalytic materials. We concluded the review with some perspectives on the challenges and opportunities about the future developments of metal–metalloid amorphous alloy catalysts

    Carnivore Translocations and Conservation: Insights from Population Models and Field Data for Fishers (Martes pennanti)

    Get PDF
    Translocations are frequently used to restore extirpated carnivore populations. Understanding the factors that influence translocation success is important because carnivore translocations can be time consuming, expensive, and controversial. Using population viability software, we modeled reintroductions of the fisher, a candidate for endangered or threatened status in the Pacific states of the US. Our model predicts that the most important factor influencing successful re-establishment of a fisher population is the number of adult females reintroduced (provided some males are also released). Data from 38 translocations of fishers in North America, including 30 reintroductions, 5 augmentations and 3 introductions, show that the number of females released was, indeed, a good predictor of success but that the number of males released, geographic region and proximity of the source population to the release site were also important predictors. The contradiction between model and data regarding males may relate to the assumption in the model that all males are equally good breeders. We hypothesize that many males may need to be released to insure a sufficient number of good breeders are included, probably large males. Seventy-seven percent of reintroductions with known outcomes (success or failure) succeeded; all 5 augmentations succeeded; but none of the 3 introductions succeeded. Reintroductions were instrumental in reestablishing fisher populations within their historical range and expanding the range from its most-contracted state (43% of the historical range) to its current state (68% of the historical range). To increase the likelihood of translocation success, we recommend that managers: 1) release as many fishers as possible, 2) release more females than males (55–60% females) when possible, 3) release as many adults as possible, especially large males, 4) release fishers from a nearby source population, 5) conduct a formal feasibility assessment, and 6) develop a comprehensive implementation plan that includes an active monitoring program

    Genetic interactions and functional analyses of the fission yeast gsk3 and amk2 single and double mutants defective in TORC1-dependent processes

    Get PDF
    The Target of Rapamycin (TOR) signalling network plays important roles in aging and disease. The AMP-activated protein kinase (AMPK) and the Gsk3 kinase inhibit TOR during stress. We performed genetic interaction screens using synthetic genetic arrays (SGA) with gsk3 and amk2 as query mutants, the latter encoding the regulatory subunit of AMPK. We identified 69 negative and 82 positive common genetic interactors, with functions related to cellular growth and stress. The 120 gsk3-specific negative interactors included genes functioning in translation and ribosomes. The 215 amk2-specific negative interactors included genes functioning in chromatin silencing and DNA damage repair. Both amk2- and gsk3-specific interactors were enriched in phenotype categories related to abnormal cell size and shape. We also performed SGA screen with the amk2 gsk3 double mutant as a query. Mutants sensitive to 5-fluorouracil, an anticancer drug are under-represented within the 305 positive interactors specific for the amk2 gsk3 query. The triple-mutant SGA screen showed higher number of negative interactions than the double mutant SGA screens and uncovered additional genetic network information. These results reveal common and specialized roles of AMPK and Gsk3 in mediating TOR-dependent processes, indicating that AMPK and Gsk3 act in parallel to inhibit TOR function in fission yeast

    A Comparison of Neuroimaging Abnormalities in Multiple Sclerosis, Major Depression and Chronic Fatigue Syndrome (Myalgic Encephalomyelitis): is There a Common Cause?

    Get PDF
    • …
    corecore